a2 United States Patent

US009336063B1

(10) Patent No.: US 9,336,063 B1

Kempe (45) Date of Patent: May 10, 2016
(54) DISTRIBUTED TASK MANAGEMENT (56) References Cited
U.S. PATENT DOCUMENTS
(75) Inventor: Gregory Kempe, Cape Town (ZA)
6,496,823 B2* 12/2002 Blank et al.
. . . 8,887,163 B2* 11/2014 Rastogiccccoeovvvnenee 718/102
(73) Assignee: éjnsl?)lzon Technologies, Inc., Seattle, WA 2007/0198977 Al* 82007 Abernethyetal. ... 718/100
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Gregory A Kessler
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Knobbe, Martens, Olson &
U.S.C. 154(b) by 1028 days. Bear, LLP
57 ABSTRACT
(21) Appl. No.: 13/429,184 Systems and methods are disclosed which facilitate manage-
ment of a set of tasks between a plurality of task processing
. devices. Information corresponding to a number of tasks may
(22) Filed: Mar. 23, 2012 be accessible to each of the task processing devices. In some
instances, the information may be stored within a database.
(51) Int.Cl Each task processing device may claim a number of tasks,
G 0;5 F 9 V46 (2006.01) such that it is not claimable by other task processing devices,
GOGF 9/50 500 6. 01 and may then process its claimed tasks. Each task processing
(01) device may be associated with a desired number of tasks, such
(52) US.CL that the desired number of tasks are claimed immediately or
CPC .. GO6F 9/5083 (2013.01) substantially immediately. Additional tasks may be claimed
(58) TField of Classification Search bya tasl.< processing device after a delay which may.be based
None at least in part on the number of tasks currently claimed.

See application file for complete search history.

23 Claims, 4 Drawing Sheets

BEGIN TASK

400
\/QCQHISITION ROUTINE

402

DETERMINE
UNCLAIMED TASK

A

IMPLEMENT | .+ r¢ IMPOSE
DELAY ~ CLAIM DELAY?
408
H NO
h J
YES
» CLAIM TASK
4@9\
A4
PROCESS TASK

CLAIM
ADDITIONAL
TASKS?

US 9,336,063 B1

Sheet 1 of 4

May 10, 2016

U.S. Patent

JIOLS vivd
aissioodd

0FT

JAOIS
VIVd IDY10S

0€T - \v

JIOLS
VIVd SASVL

ocr

. MAOMIIN |

51

N

=

x=p
I0IAId
ONISSTIIOUd
MSVI

/Zcem

§="p
Id1aa
ONISSIDOUd
ASVL

/\Ugm

c=p
IdIAdd
INISSIDO}
ASV.I

/\mgm

g=p
I2IAda
ONISSIOOUd
ASVI

/\«SS

US 9,336,063 B1

Sheet 2 of 4

May 10, 2016

U.S. Patent

Ya v

, VIVAISVI
TAOIS VIVA aissidodd
aissidodNd . JITIWSNVIL (9)

s
)
orL S - ~

VIVAISVL

JAOLS D
VIvVd 1D03Nn0S T

e ~
~.
\
0¢1L S - .

VIV ISVL T

I23¥N0S ISTINOTA (€)

ASVI
WIVID @)

TIOIS 3 e

VIVA SASVI — NOLLVIWIOINI
. ~ T ISITSVI
~— IAITAITA (T)

I0¥N0S LINSNVYL (5)

///, m = n&
dA01A3d

— 1 ONISSID0dd

ASVI

j

Voor

ASVIAHI OL

\ONIANOJSTINOD
| SNOLIDNYISNI

$S100¥d (9)

US 9,336,063 B1

Sheet 3 of 4

May 10, 2016

U.S. Patent

€31,
G=1
40IA9d
ONISSTOONd
\ MSVI
NSV.I AINIVIO pd MS
ATINVIONTIY *
ASVITIL B /
\
\
TIOLS MSVI AANIVTO
VIVd SASVI »Woﬂmﬁwmww q
0TI T T
- N —_ ISVIWIVID (9 ISINOTY (€)
AN T
// //
™~
// omia | . SVIATH
NOILVIWIOINI ~— ONISSTOON | ALINVIONTAY
ISTTSVI v L ANIAYA1Ad ©
JAINRLITN (L) 1

q001

U.S. Patent May 10, 2016 Sheet 4 of 4 US 9,336,063 B1

400 BEGIN TASK
CQUISITION ROUTINE

Y

DETERMINE
UNCLAIMED TASK

402

4(@\

IMPLEMENT e« YES IMPOSE
DELAY CLAIM DELAY?

408

\ NO

\ /
YES

> CLAIM TASK

e]

PROCESS TASK

CLAIM
ADDITIONAL
TASKS?

US 9,336,063 B1

1
DISTRIBUTED TASK MANAGEMENT

BACKGROUND

Generally described, computing devices utilize a commu-
nication network, or a series of communication networks, to
exchange data. Companies and organizations operate com-
puter networks that interconnect a number of computing
devices to support operations or provide services to third
parties. The computing systems can be located in a single
geographic location or located in multiple, distinct geo-
graphic locations (e.g., interconnected via private or public
communication networks). Specifically, data centers or data
processing centers, herein generally referred to as “data cen-
ters,” may include a number of interconnected computing
systems to provide computing resources to users of the data
center. The data centers may be private data centers operated
on behalf of an organization or public data centers operated
on behalf, or for the benefit, of the general public.

Utilization of data center resources may include configur-
ing computing systems to assist in the processing of various
types of information. For example, computing systems may
be used to convert a first format of audio or video information
to a second format. As a further example, computing systems
may be used to process information stored within a database.
In some instances, a number of computing systems may be
configured to cooperatively process a shared set of tasks. For
example, each task within a set of tasks may be assigned to a
computing system until all tasks have been completed.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages will become more readily appreciated as the same
become better understood by reference to the following
detailed description, when taken in conjunction with the
accompanying drawings, where:

FIG. 1 is a schematic block diagram depicting an illustra-
tive operating environment in which a number of task pro-
cessing devices interact to complete a set of tasks correspond-
ing to processing data from a source data store and storing
resulting data in a processed data store;

FIG. 2 is a block diagram depicting the claiming and pro-
cessing of a task by a task processing device of FIG. 1;

FIG. 3 is a block diagram depicting a first task processing
device of FIG. 1 requesting the release of a claim to a task by
a second task processing device, and claiming of the task by
the first task processing device; and

FIG. 4 is aflow diagram depicting an illustrative routine for
claiming a number of tasks by a task processing device of
FIG. 1.

DETAILED DESCRIPTION

Generally described, aspects of the present disclosure
relate to managing the processing of a number of tasks
between computing devices. More specifically, a data store
may contain information pertaining to a number of tasks
which are desired to be processed by one or more computing
devices. A number of computing devices, generally referred
to herein as a task processing device, may interact with the
data store in order to retrieve task information and claim
tasks. Generally described, a task may correspond to any set
of computer readable instructions executable by a task pro-
cessing device. For example, tasks may include creating,
reading, updating, and deleting data. Further, tasks may
include executing one or more algorithms or operations on

10

15

20

25

30

35

40

45

50

55

60

65

2

data. Claiming a task may correspond to an indication that a
specific computing device will process the task, and may
serve to prevent other computing devices from claiming the
task.

In accordance with embodiments of the present disclosure,
a set of task processing devices may interact with the task data
store in order to determine any unclaimed tasks which exist,
and, if possible, to claim these tasks. Each claim to a task may
be reflected in the tasks data store or an alternative data store,
and may prevent other task processing devices from also
claiming the task. Thereafter, each task processing device
may process corresponding claimed tasks by executing com-
puting instructions corresponding to the task, as will be
described in more detail below. In some embodiments, a task
processing device may process all or a subset of claimed tasks
concurrently (e.g., in parallel). In other embodiments, a task
processing device may process claimed tasks iteratively (e.g.,
in serial). Subsequent to processing a task, a task processing
device may modify the tasks data store to reflect that the task
has been completed. In some embodiments, as will be
described below, a claim to a task may expire at a specified
duration. If a task is not completed prior to this expiration, the
task may, in some instances, become available for reclaiming
by the same task processing device or for claiming by another
task processing device. In this manner, a task may be pro-
cessed by one or more task processing device until com-
pleted. By utilizing a tasks data store in conjunction with
information indicating claims to each task, a number of tasks
may be cooperatively processed by any number of computing
devices without requiring a centralized task allocation device.

In order to facilitate cooperative processing of tasks, each
task processing device may be associated with a desired num-
ber of claimed tasks. Illustratively, the desired number of
claimed tasks may be based on the processing capabilities of
the task processing device, the total number of tasks to be
processed between all task processing devices, additional
criteria, or a combination of criteria. For example, a first task
processing device of relatively low processing power may
desire to claim only two tasks, while a second task processing
device of relatively high processing power may desire to
claim twenty tasks. In some embodiments, a desired number
of tasks associated with a task processing device may be
based at least in part on the total number of tasks required to
be processed. For example, each of a number of task process-
ing devices may be assigned a desired number of tasks based
on a percentage of the total number of tasks which should be
processed. In some embodiments, percentages may be
adjusted based on the processing power of a task processing
device.

Each computing device may impose a delay before claim-
ing any tasks above the desired number oftasks. For example,
if the first computing device of the example above has already
claimed two tasks, it may delay for n seconds before claiming
athird task. [llustratively, such a delay may be imposed from
the time at which the task becomes available to claim. For
example, the period of delay may begin at the moment that a
task is created. As a further example, the period of delay may
begin at the moment that a previous claim to a task is released.
In some embodiments, the delay before obtaining additional
tasks may be based at least partially on the current number of
claimed tasks. For example, the first computing device may
delay for 2n seconds before claiming a fourth task, for 3n
seconds before claiming a fourth task, etc. Such a delay may
provide an opportunity for other computing devices to claim
tasks, such that, if the total number of tasks is not greater than
the total number of desired tasks, no computing device would
be required to claim more than its desired number of tasks. As

US 9,336,063 B1

3

such, tasks may be distributed between multiple computing
devices in accordance with each device’s desired number of
tasks without requiring a centralized task distribution coordi-
nation component.

In some embodiments, the delay imposed prior to claiming
a task may be based at least in part on the frequency at which
tasks must be performed, on the time required to process a
task, and on a desired tolerance for failure. As an illustrative
example, a set of 36 repeating tasks may be required to be
processed by 12 task processing devices. Each task process-
ing device may be configured to process a number of tasks
concurrently. Each task may be required to be repeatedly
processed at one minute intervals, and may require 50 sec-
onds to process. Accordingly, each of the 12 task processing
devices may be configured to desire to claim 3 tasks, such that
under normal operating conditions, each of the 12 task pro-
cessing devices need claim no more than its desired number
of'tasks. Illustratively, each of the 12 task processing devices
may then claim 3 tasks and consecutively process the tasks. In
some embodiments, after completion of each task, a task
processing device may be configured to continuously reclaim
its corresponding 3 tasks, such that all tasks are completed at
least every 50 seconds. However, the collection of task pro-
cessing devices may be configured to operate with up 25% of
task processing devices failing. In such a failure scenario, 3 of
the 12 task processing devices may fail, leaving 9 tasks
unclaimed. As such, each of the remaining 9 task processing
devices would be required to acquire an additional task. As
described above, because this additional task would exceed
the number of desired tasks, each task processing device may
impose a delay before acquiring the additional task. However,
because each task requires 50 seconds to process, and must be
processed every minute, each of the remaining 9 task process-
ing devices may delay no more than 10 seconds before acquir-
ing the additional task. As such, the delay imposed before
acquiring one task greater than the desired number of tasks
may besetat 10 seconds or less. In further examples, multiple
additional tasks may be required to be claimed by task pro-
cessing devices during failure scenarios. As such, the total
delay imposed before acquiring the multiple additional tasks
may be set such that the total delay does not exceed the time
available to begin processing the task.

In some embodiments, a task processing device may be
configured to alter its desired number of tasks based on the
number of tasks it currently claims. For example, if a task
processing has claimed a large number of tasks in excess of its
desired number, this may indicate that the processing of tasks
is generally overloaded. As such, the task processing device
may temporarily or permanently increase its desired number
of tasks to compensate for such overloading. In some
instances, increasing the desired number of tasks may be
beneficial, since it may reduce the delay before tasks are
reclaimed and processed. Conversely, if a task processing
device holds less than its desired number of tasks, it may
reduce its desired number of tasks.

In some embodiments, tasks claims may be associated with
a claim duration. As described above, a claim may prevent
other task processing devices from processing a task. As such,
a claim duration may reflect the time period during which a
task is claimed by a specified task processing device, and may
not be claimed by other task processing devices. Illustra-
tively, a claim duration may reflect a period during which a
task processing device is processing a claimed task. For
example, a first computing device may claim task A for a
duration of n seconds. This duration may be recorded in the
task data store, such that it is accessible to other computing
devices. Each computing device may be configured such that

10

15

20

25

30

35

40

45

50

55

60

65

4

it may extend the duration of a claim prior to the duration
expiring. For example, if the first computing device has
claimed no more than its desired number of tasks, the first
computing device may renew its claim to task A prior to n
seconds elapsing. As such, all other computing devices would
be prevented from claiming task A, and the first computing
device would continue to claim task A until completion of the
task. However, if the first computing device has claimed more
than its desired number oftasks, a delay may be imposed prior
to reclaiming a task, allowing another computing device to
claim the task during the delay. For example, a second com-
puting device may currently claim less than its desired num-
ber of tasks, and as such, may desire to claim task A. When the
specified duration of n seconds elapses, the second computing
device may immediately or substantially immediately claim
task A. The second computing device may be aware of the
time at which the specified duration n will elapse based, for
example, on information contained within the task data store.
As such, the task A will be transferred from the first comput-
ing device (which held more than its desired number of tasks)
to the second computing device (which held less than its
desired number of tasks). In this manner, tasks may be evenly
distributed between computing devices in accordance with
each devices desired number of tasks.

As described above, a delay before acquiring tasks may be
based on the number of tasks currently held. For example, the
delay may increase proportionally with the number of undes-
ired tasks currently claimed. [llustratively, a first computing
device may hold ten undesired tasks (e.g., ten more than its
specified number of desired tasks), while a second computing
device may hold only one undesired task. As such, the delay
prior to reclaiming a task implemented by the first computing
device may be ten times longer than the delay implemented
by the second computing device, and the second computing
device would be more likely to claim a newly available task.
Tlustratively, the duration of a task held by the first computing
device may expire, upon which the first computing device A
would impose a delay of 10n before attempting to reclaim the
task. Similarly, the second computing device would impose a
delay of 1n before attempting to reclaim the task. As such, the
task would transfer from the first computing device to the
second computing device. In this manner, even where all
computing devices hold more than their desired number of
tasks, excess tasks may be distributed between computing
devices proportionally to their desired number of claimed
tasks.

In some instances, multiple computing devices may desire
to acquire a task at the same time. In some embodiments, a
race condition may exist in which each of these multiple
computing devices may attempt to claim the task. In such a
race condition, the fastest responding computing device may
claim the task. In other embodiments, priorities may be asso-
ciated with each computing device, such that the computing
device with the highest priority may acquire the task. Further,
in some instances, multiple unclaimed tasks may be simulta-
neously available. In some embodiments, each task may be
equally likely to become acquired by a computing device. In
other embodiments, tasks may be ordered, such that a com-
puting device may attempt to claim a task with a higher
ordering prior to a task with a lower ordering.

With reference to FIG. 1, an illustrative operating environ-
ment is shown which includes a number of task processing
devices 100 in communication with a tasks data store 120 via
a communication network 110. The illustrative operating
environment of FIG. 1 further includes a source data store
130, which may store data associated with uncompleted

US 9,336,063 B1

5

tasks, as well as a processed data store 140 which may store
data associated with processed tasks.

As illustrated in FIG. 1, the operating environment may
include any n number of task processing devices 100. Each
task processing device 100 may correspond to a computing
device configured to process one or more tasks corresponding
to information stored within the tasks data store 120. In some
embodiments, task processing devices 100 may correspond to
a physical computing device. In other embodiments, task
processing devices 100 may correspond to virtual machine
instances implemented by one or more physical computing
devices. In still other embodiments, task processing devices
100 may correspond to both virtual computing devices and
physical computing devices.

Each task processing device 100 may be configured to
process one or more tasks. As described above, tasks may
correspond to any processing of data or other information
necessary or desired within the operating environment. One
skilled in the art will appreciate that a task may correspond to
any set of operations performed by a task processing device
100. For example, a task may correspond to reading data from
a source data store 130 or to creating, modifying, or storing
data in a processed data store 140. By way of non-limiting
example, a task may correspond to satisfying a request from
a user of an associated computing system, to converting data
of'a first format into data of a second format, or to transferring
data from a first data store to a second data store. In some
embodiments, a task processing device 100 may be config-
ured to process one or more tasks consecutively (e.g., in
parallel). In other embodiments, a task processing device 100
may be configured to process tasks iteratively.

Each task processing device 100 may be associated with a
desired number of tasks d. As described above, the desired
number of tasks corresponding to each task processing device
100 may be based on the processing capabilities of a task
processing device 100. For example, a task processing device
100 with a relatively large amount of available processing
capability may be associated with a higher number of desired
tasks than a task processing device 100 with a relatively low
amount of available processing power. Processing power may
be determined based on a number of characteristics of a task
processing device 100 including, but not limited to, speed or
configuration of central processing units (CPU), graphical
processing unites (GPU), random access memory (RAM),
persistent storage devices (e.g., hard disk drives (HDD)), and
network access (e.g., bandwidth). Further, in some embodi-
ments, a task processing device’s desired number of tasks
may be based on the total number of tasks whose information
is stored within the tasks data store 120. For example, each
task processing device may be assigned a desired number of
tasks based on a percentage of the total number of tasks in a
tasks data store 120. In some embodiments, such an assigned
percentage may be weighted based on the relative processing
power of a task processing device 100.

As described above, in some embodiments, a task process-
ing device 100 may be configured to alter its desired number
of tasks based on the number of tasks it currently holds. For
example, where a task processing device 100 holds many
more than its desired number of tasks (e.g., during a time of
partial system failure), it may be configured to increase its
desired number of tasks. This may enable the task processing
device 100 to reduce the delay before performing tasks. Con-
versely, if a task processing device 100 claims many fewer
tasks than its desired number of tasks (e.g., in response to
introduction of new task processing devices 100), the task
processing device 100 may reduce its desired number of
tasks. This may enable the configuration of task processing

20

35

40

45

50

55

60

65

6

devices to deal with fluctuations in the configuration of an
overall operating environment without requiring manual
reconfiguration or configuration by a centralized entity.

The tasks data store 120 may contain information corre-
sponding to some number of tasks. Further, the task data store
120 may be configured to reflect whether a task has been
claimed by a task processing device 100, to prevent more than
one task processing device 100 from claiming a single task,
and to store the duration of a current claim to each task.
Initially, all tasks within the tasks data store 120 may be
unclaimed.

Each task processing device 100 may be configured to
claim tasks corresponding to information within the tasks
data store 120 in accordance with their desired number of
tasks. As an illustrative example, each task processing may
periodically check the status of all or a subset of tasks stored
in the tasks data store 120. In some embodiments, a task
processing device 100 may be configured to, on initialization,
determine the status of each task within the tasks data store
120. For any unclaimed tasks, the task processing device 100
may attempt to claim the task in accordance with the number
of currently claimed tasks. For example, tasks may be
claimed iteratively, with a delay imposed prior to claiming
each task. The delay may be proportional to the number of
tasks in excess of the desired number of tasks. Illustratively,
the delay may be zero or a fixed amount where the number of
currently claimed tasks is less than the desired number of
tasks. Therefore, initially, a task processing device 100A may
attempt to claim a first task immediately or substantially
immediately. The task processing device 100A, whose
desired number of tasks is 5, as reflected in FIG. 1, may
continue to attempt to claim tasks immediately or substan-
tially immediately until the number of claimed tasks equals or
exceeds the desired number of tasks.

Thereafter, the task processing device 100 A may impose a
delay prior to claiming a task proportional to the number of
undesired tasks currently held. For example, a delay of n may
be imposed before claiming a sixth task, a delay of 2n may be
imposed before claiming a seventh task, etc. One example of
an algorithm used to determine the delay imposed before
claiming an additional task may be delay=max(claimed
tasks—desired tasks+1, 0)*n, where the “max” function
returns the greater of the two arguments, and where n repre-
sents a delay constant (e.g., 500 ms, 1 second, etc). Utilizing
such an equation, the delay would be equal to zero until the
number of claimed tasks equals the number of desired tasks.
Thereafter, the delay would increase proportional to a
selected n amount. The n amount may be any specified delay
amount. In some embodiments, the n amount may be deter-
mined based on the tasks being processed. For example, as
described above, the n amount may be chosen based on the
frequency at which one or more tasks should be processed as
well as the expected failure of task processing devices 100.
For example, the n amount may be selected such that, if the
maximum expected number of task processing devices fail,
the total delay before claiming tasks does not exceed the
frequency at which a task should be processed. Further, in
some embodiments, a task processing device 100 may be
configured to modify a tasks data store 120 to reflect that a
task is claimed reluctantly (e.g., that it exceeds the task pro-
cessing devices 100 desired number of tasks), as will be
described in more detail below with respect to FIG. 3.

As discussed above, a claim to a task may be associated
with a claim duration. In some embodiments, all claims may
be of a specified claim duration. In other embodiments, a
claim duration may be specified by the claiming task process-
ing device 100. Claim durations associated with each claimed

US 9,336,063 B1

7

task may be reflected in the tasks data store 120, such that
each task processing device 100 may be aware of current
duration. Subsequent to the expiration of a claim duration, a
task may automatically become unclaimed. A task processing
device 100 may be configured in some instances to reclaim or
extend a claim duration corresponding to a currently claimed
task. For example, if atask processing device 100 has claimed
less than or equal to its current desired number of tasks, the
task processing device 100 may continue to reclaim each of
its claimed tasks prior to expiration of each claim duration. As
such, each claimed task would continue to be unavailable to
other task processing devices 100. However, in instances
where a task processing device 100 holds more than its
desired number of tasks, it may impose a delay before
reclaiming a task. As such, the task would become available
for other task processing devices 100 to claim for the period
of'the delay. In some embodiments, the delay may be propor-
tional to the number of tasks currently claimed that exceed the
desired number of tasks, as described above.

In some embodiments, a task processing device 100 may
be configured to release a task in response to a request from
another task processing device 100. For example, as
described above, in some embodiments tasks may be marked
as claimed reluctantly in the tasks data store 120. Illustra-
tively, a first task processing device 100A may mark a task A
as claimed in excess ofits desired number of claims. A second
task processing device 100B may have claimed less than its
desired number of tasks. As such, the second processing
device 100B may request release of the task A by the first task
processing device 100A. The first processing device 100A
may then release the claim to the task A, such that the second
task processing device 100B may claim the task. One illus-
trative interaction for requesting a release of a task will be
described in more detail below with respect to FIG. 3.

After acquiring one or more tasks, a task processing device
100 may begin to process the claimed tasks. In some embodi-
ments, a task processing device 100 may process all or a
portion of claimed tasks in parallel. In other embodiments, a
task processing device 100 may process claimed tasks itera-
tively. In still more embodiments, processing of tasks may be
based on a priority assigned to each task. As described above,
a task may correspond to any set of executable instructions
processable by atask processing device 100. In some embodi-
ments, processing a task may require acquiring source task
data, performing one or more operations on the source data,
and storing resulting processed task data. The operating envi-
ronment as shown in FIG. 1 therefore illustratively includes a
source data store 130 as well as a processed data store 140. In
this illustrative example, the source data store 130 may store
information corresponding to one or more tasks available for
claiming in the tasks data store 120. The processed data store
140 may be configured to hold any data produced as a result
of processing a task. For example, a task may correspond to
converting a video file from a first format to a second format.
As such, atask processing device 100 may retrieve athe video
file of the first format from the source data store 130, execute
instructions necessary to convert the video file, and store the
resulting video file of the second format to the processed data
store 140.

With reference to FIG. 2, a block diagram is shown depict-
ing the claiming of a task from a tasks data store 120 by a task
processing device 100A. At (1), the task processing device
100A may retrieve task list information from the tasks data
store 120. Ilustratively, the task list information may corre-
spond to a listing of all tasks, as well as their current claim
status and duration of any claims. In some embodiments, a
task processing device 100A may retrieve only a portion of

20

25

30

40

45

8

task list information from the tasks data store 120. For
example, a task processing device 100A may be configured to
retrieve task status information at the expiration of a task’s
claim duration. Illustratively, based on previously known
information, a task processing device 100A may expect the
claim duration of a given task A to expire at a known point.
Therefore, the task processing device 100A may query the
tasks data store 120 to retrieve the status of the task A at the
point at which the duration expires. The task processing
device 100A may then claim the task in accordance with
aspects of the present disclosure.

Specifically, if a task in the received task list information is
currently unclaimed, the task processing device 100A may
claim the task by transmitting a claim on the task to the tasks
data store 120. As described above, claiming a task may
include imposing a delay determined based on the number of
currently claimed tasks. Further detail regarding delay prior
to claiming a task will be described in more detail below with
reference to FIG. 4. In some embodiments, where a task is
claimed in excess of the number of desired tasks, the task may
be marked as claimed reluctantly in the tasks data store 120.
This may enable other task processing devices 100 to request
release of the task by the task processing device 100A, and to
claim the task themselves. In some instances, multiple task
processing devices 100 may attempt to claim a task at the
same time. In these instances, the tasks data store 120 may
record a claim to the task to the task processing device 100
corresponding to the first received request. Further, though
not displayed in FIG. 2, the tasks data store 120 may be
operable to confirm a claim to a task to a task processing
device 100, such that the task processing device 100 is aware
of whether a claim to a task was successful.

Subsequent to claiming a task, the task processing device
100A may process the task. As described above, a task may
correspond to any set of instructions executable by the task
processing device 100A. In some embodiments, these
instructions may be included within the tasks data store 120
and transmitted to the task processing device 100 A along with
the task status information. In other embodiments, task infor-
mation may be stored in an additional data store (not shown in
FIG. 2) and retrieved by the task processing device A as
necessary. In still more embodiments, instructions corre-
sponding to a task may be preconfigured into a task process-
ing device A and modified in accordance with received task
information. Still further, in some embodiments, a task may
require receiving data from a source data store 130. Addition-
ally, in some embodiments, a task may require storing pro-
cessed data in a processed data store 140. Though shown
herein, in some embodiments, processing a task may require
interaction with additional or alternative components not dis-
played in FIG. 2. For example, processing a task may require
transmission of data to or from additional or alternative com-
puting devices.

In the illustrative interaction of FIG. 2, at (3), the task
processing device 100A may request any source task data
relating to the claimed task from the source data store 130.
The source data store 130, at (4), may transmit the requested
source task data to the task processing device 100A. Based on
receiving the source task data, the task processing device
100A may, at (5), execute instructions corresponding to the
task on the received source task data. As described above,
these instructions may include, but are not limited to, any
combination of creating data, modifying data, reading data, or
deleting data, as well as performing additional or alternative
algorithms or operations on data. In the illustrative embodi-
ment of FIG. 2, processing instructions corresponding to the

US 9,336,063 B1

9

task may result in processed data. This processed task data
may, at (6), be transmitted in the processed data store 140.

Though not shown in FIG. 2, thereafter, the task processing
device 100 A may further interact with the tasks data store 120
to verify that the task has been completed. For example, the
tasks data store 120 may modify the task to reflect that it has
been completed. In some embodiments, the tasks data store
120 may delete information corresponding to the task from
the tasks data store 120.

With reference to FIG. 3, a block diagram is shown depict-
ing the transfer for a task from a first task processing device
100A to a second task processing device 100B based on a
request to transfer the task. lllustratively, a request to transfer
a task may occur when the task processing device 100B
determines that the task processing device 100A has reluc-
tantly claimed the task. Reluctantly claiming a task may
occur, for example, where claiming the task causes the task
processing device 100A to exceed its desired number of
claimed tasks. For example, the task processing device 100A
may be associated with five desired tasks, as reflected in FI1G.
3. Illustratively, the task processing device 100A may hold
claim to six tasks, and may therefore claim at least on of these
tasks reluctantly. In some embodiments, a task processing
device 100 may only mark as reluctantly claimed those tasks
which exceed its number of desired tasks. In other embodi-
ments, a task processing device 100 may mark all tasks as
reluctantly claimed when the number of claimed tasks
exceeds the desired number of claimed tasks. Information
corresponding to reluctantly claimed tasks may be stored in
the tasks data store 120, enabling other task processing
devices 100 to identify reluctantly held tasks.

With continued reference to FIG. 3, at (1), the task process-
ing device 100B may retrieve task list information from the
tasks data store 120, including an indication of one or more
tasks reluctantly claimed by other task processing devices,
such as task processing device 100A. Illustratively, the task
processing device 100A may hold six tasks, while only desir-
ing to hold five tasks. Further, the task processing device
100B may hold only one task, while desiring to hold three. As
such, the task processing device 100B may, at (2), determine
at least one reluctantly claimed task to request for release. In
some embodiments, the task processing device 100B may
further determine the task processing device 100 correspond-
ing to the reluctantly claimed task. In other embodiments,
information may be included in the tasks data store 120 iden-
tifying the task processing device 100 reluctantly holding a
task.

In the illustrative interaction of FIG. 3, the task processing
device 100B may determine that the task processing device
100A is reluctantly holding at least one task. Thereafter, at
(3), the task processing device 100B may request that the task
processing device 100A release its claim to the determined
task. In some embodiments, a task processing device 100 may
be operable to determine whether the grant such a request to
release a task. Such determination may be made, for instance,
based on the progress in processing the task. For example, a
reluctantly claimed task may be nearing completion, and as
such, the task processing device 100A may determine that the
task should not be released. In some such embodiments, the
task processing device 100A may transmit a rejection to the
requesting task processing device 100B. In other embodi-
ments, a task processing device 100 may be configured to
automatically comply with a request to release a reluctantly
held task.

Thereafter, at (4), the task processing device 100A may
transmit a release of its claim to the determined task to the
tasks data store 120. In some embodiments, such a release

20

30

40

45

10

may correspond to shortening the duration of a claim to the
task in question. For example, if a duration of five minutes
currently exists for the claimed task, the task processing
device 100A may modify the claimed duration to a few sec-
onds. In other embodiments, such a release may correspond
to relinquishing a claim to a task, making the task available to
other task processing devices immediately or substantially
immediately. In some embodiments, the task processing
device 100A may inform the task processing device 100B of
the updated duration or release.

Accordingly, at (5), the task processing device 100B may
transmit a claim to the task to the tasks data store 120. The
task processing device 100B may then process the task as
described above with respect to FIG. 2.

With reference to FIG. 4, a flow diagram depicting an
illustrative routine 400 for claiming a task, such as a task
stored in a tasks data store 120 of FIG. 1, is shown. The
routine 400 may be implemented, for example, by one or
more task processing devices 100 of FIG. 1.

At block 402, a task processing device 100 may determine
a task which is currently unclaimed. Such a determination
may be made, for example, based on task status information
received from a tasks data store 120. As a further example,
determination of an unclaimed task may be based at least in
part on a known claim duration corresponding to a previous
claim on a task. At block 404, the task processing device 100
may determine whether to impose a delay prior to attempting
to claim the determined task. As described above, a delay may
be imposed in instances where the task processing device 100
already holds a desired number oftasks. If the task processing
device 100 determines that no delay should be imposed, the
routine 400 may continue at block 408.

Alternatively, if the task processing device 100 determines
that a delay should be imposed prior to claiming a task, the
routine may proceed at block 406. At block 406, a delay may
be implemented prior to claiming the determined task. As
described above, a delay may be implemented when a task
processing device 100 claims equal to or over its desired
number of tasks. Such a delay may, for example, allow other
task processing devices 100 to claim the task. As described
above, the duration of the delay may be based at least partially
on the number of tasks claimed in excess of the desired
number of claims. For example, a delay of n may be imposed
before claiming a first task beyond the desired number of
tasks, a delay of 2n may be imposed before claiming a second
task beyond the desired number of tasks, etc. One example of
an algorithm used to determine the delay imposed before
claiming an additional task may be delay=max(claimed
tasks—desired tasks+1, 0)*n, where the “max” function
returns the greater of the two arguments, and where n repre-
sents a proportional delay constant (e.g., 500 ms, 1 second,
etc). Utilizing such an equation, the delay would be equal to
zero until the number of claimed tasks equals the number of
desired tasks. Thereafter, the delay would increase propor-
tional to a selected n amount, which may be any specified
delay amount.

Subsequent to implementing the determined delay, the rou-
tine 400 may continue at block 408, where the task may be
claimed. As described above with respect to FIG. 2, claiming
atask may correspond to transmitting a request to claim a task
to a tasks data store. In some embodiments, claiming a task
may include specifying a duration of the claim, such that
other task processing devices 100 may attempt to claim the
task at the expiration of the claim duration. In additional
embodiments, ifa task is claimed reluctantly (e.g., is in excess
of the desired number of tasks), claiming a task may further
include an indication that the task has been claimed reluc-

US 9,336,063 B1

11

tantly, such that other task processing devices 100 may
request a release of the claim prior to expiration of a stored
claim duration.

At block 409, the task processing device 100 may process
the claimed task. In some embodiments, the task processing
device 100 may be configured to continue the routine 400
while processing the task. Illustratively, the task processing
device 100 may continue to claim additional or alternative
tasks while processing one or more claimed tasks. As such,
though block 409 is included in the routine 400 for clarity, the
task processing device 100 may not be limited to processing
claimed tasks within the routine 400. Rather, in some embodi-
ments, processing of claimed tasks may be accomplished by
alternative or additional routines.

At block 410, a determination may be made as to whether
to claim additional tasks. In some embodiments, a task pro-
cessing device 100 may be configured to claim a maximum
number of tasks, which may be distinct from the specified
desired number of tasks. In such embodiments, if the maxi-
mum number of claimed tasks has been reached, the routine
400 may end at block 412. Otherwise, the routine may con-
tinue at block 402, where an additional unclaimed task may
be determined. In other embodiments, a task processing
device 100 may be configured to claim additional tasks until
no additional tasks remain. As such, the determination of
whether to claim additional tasks may comport to a determi-
nation of whether any tasks remain unclaimed. If so, the
routine 400 may continue at block 402 as described above.
Otherwise, the routine 400 may end at block 412.

In still more embodiments, a task processing device 100
may be configured to continue routine 400 until no additional
tasks remain incomplete. For example, while no unclaimed
tasks may exist, anumber of tasks may exist which are incom-
plete, but currently claimed. As such, a task processing device
100 may return to block 402 at the time when at least one task
becomes unclaimed. For example, a task processing device
100 may inspect the claim duration of each claimed task, and
return to block 402 at the time when the next task would
become unclaimed. Such an embodiment may be utilized, for
example, when a number of tasks are held reluctantly by
additional task processing devices 100. Because a task is held
reluctantly, a delay may be imposed before the task is
reclaimed by the previously claiming task processing device
100. As such, an additional task processing device 100 may
claim the task during the period of delay. In these embodi-
ments, the routine 400 may continue such that each task
processing device attempts to claim tasks during period of
delay. Subsequent to all tasks being completed, the routine
400 may end at block 412.

All of the processes described herein may be embodied in,
and fully automated via, software code modules executed by
one or more general purpose computers or processors. The
code modules may be stored in any type of computer-readable
medium or other computer storage device. Some or all the
methods may alternatively be embodied in specialized com-
puter hardware. In addition, the components referred to
herein may be implemented in hardware, software, firmware
or a combination thereof.

Conditional language such as, among others, “can,”
“could,” “might” or “may,” unless specifically stated other-
wise, are otherwise understood within the context as used in
general to convey that certain embodiments include, while
other embodiments do not include, certain features, elements
and/or steps. Thus, such conditional language is not generally
intended to imply that features, elements and/or steps are in
any way required for one or more embodiments or that one or
more embodiments necessarily include logic for deciding,

20

25

35

40

45

55

12

with or without user input or prompting, whether these fea-
tures, elements and/or steps are included or are to be per-
formed in any particular embodiment.

Conjunctive language such as the phrase “at least one of X,
Y and Z,” unless specifically stated otherwise, is otherwise
understood with the context as used in general to convey that
an item, term, etc. may be either X, Y or Z. Thus, such
conjunctive language is not generally intended to imply that
certain embodiments require at least one of X, at least one of
Y and at least one of Z to each be present.

Any process descriptions, elements or blocks in the flow
diagrams described herein and/or depicted in the attached
figures should be understood as potentially representing mod-
ules, segments, or portions of code which include one or more
executable instructions for implementing specific logical
functions or elements in the process. Alternate implementa-
tions are included within the scope of the embodiments
described herein in which elements or functions may be
deleted, executed out of order from that shown, or discussed,
including substantially concurrently or in reverse order,
depending on the functionality involved as would be under-
stood by those skilled in the art.

It should be emphasized that many variations and modifi-
cations may be made to the above-described embodiments,
the elements of which are to be understood as being among
other acceptable examples. All such modifications and varia-
tions are intended to be included herein within the scope of
this disclosure and protected by the following claims.

What is claimed is:

1. A computer-implemented method for processing tasks,
the method comprising:

receiving, at a computing device, information correspond-

ing to a set of tasks available for processing, wherein the
computing device is associated with a desired number of
claimed tasks;

determining, by the computing device, at least one task of

the set of tasks that is unclaimed by another computing
device;

determining a delay to be imposed prior to claiming the at

least one task, wherein the delay is determined based at
least in part on the number of tasks currently claimed by
the computing device;

determining that a period of time corresponding to the

delay has elapsed;

subsequent to the period of time, claiming the task by the

computing device, wherein claiming a task prevents
other computing devices from processing the task;
retrieving data associated with the task from a data store;
processing the retrieved data in accordance with the task;
and

storing the processed data.

2. The computer-implemented method of claim 1, wherein
if the number of tasks currently claimed by the computing
device is less than the desired number of claimed tasks, the
duration of the delay is zero.

3. The computer-implemented method of claim 1, wherein
the duration of the delay is proportional to the number of
currently claimed tasks of the computing device which
exceed the desired number of claimed tasks.

4. The computer-implemented method of claim 1 further
comprising modifying a tasks data store to reflect a duration
of the claim to the task.

5. A system for processing a number of tasks, the system
comprising:

a data store containing information corresponding to a set

of tasks to be processed; and

US 9,336,063 B1

13

at least one computing device associated with a desired
number of claimed tasks and in communication with the
data store, the at least one computing device configured
to:
for at least one task of the set of tasks:
determine a delay to be imposed prior to claiming the
at least one task, wherein the delay is determined at
least in part on the number of tasks currently
claimed by the at least one computing device;
determine that a period of time corresponding to the
delay has elapsed;
subsequent to the period of time, claim the at least one
task,
wherein claiming the at least one task prevents other
computing devices from processing the at least one
task; and
process the at least one task.

6. The system of claim 5, wherein if the number of tasks
currently claimed by the at least one computing device is less
than the desired number of claimed tasks, the duration of the
delay is zero.

7. The system of claim 5, wherein the duration of the delay
is proportional to the number of currently claimed tasks of the
computing device which exceed the desired number of
claimed tasks.

8. The system of claim 5, wherein the duration of the delay
based at least in part on the number of tasks within the set of
tasks.

9. The system of claim 5, wherein the duration of the delay
based at least in part on a desired fault tolerance of the at least
one computing device.

10. The system of claim 5, wherein the at least one com-
puting device is further configured to modify the data store to
reflect a duration of the claim to the task.

11. The system of claim 5, wherein the at least one com-
puting device is further configured to modify the data store to
reflect completion of the task.

12. The system of claim 5, wherein the at least one com-
puting device is further configured to:

receive a request to release claim to the task; and

in response to the received request, release claim to the

task.

13. A computer-readable, non-transitory storage medium
having computer-executable instructions for processing
tasks, the computer-executable instructions comprising
instructions that upon execution by one or more computing
devices cause the one or more computing devices to:

receive information corresponding to a set of tasks;

determine at least one unclaimed task within the set of
tasks;

determine a delay to be imposed prior to claiming the at

least one unclaimed task, wherein the delay is deter-
mined based at least in part on the number of tasks
currently claimed by the one or more computing
devices;

determine that a period of time corresponding to the delay

has elapsed;

10

15

20

25

30

35

40

45

50

55

14

subsequent to the period of time, claim the at least one

unclaimed task; and

process the task.

14. The computer-readable, non-transitory storage
medium of claim 13, wherein the computer-readable, non-
transitory medium further comprises instructions that cause
the one or more computing devices to be associated with a
desired number of claimed tasks.

15. The computer-readable, non-transitory storage
medium of claim 14, wherein if the number of tasks currently
claimed by the one or more computing devices is less than the
desired number of claimed tasks, the duration of the delay is
Zero.

16. The computer-readable, non-transitory storage
medium of claim 14, wherein the duration of the delay is
proportional to the number of currently claimed tasks of the
one or more computing devices which exceed the desired
number of claimed tasks.

17. The computer-readable, non-transitory storage
medium of claim 13, wherein the computer-readable, non-
transitory medium further comprises instructions that cause
the one or more computing devices to modify the desired
number of claimed tasks based at least in part on the number
of currently claimed tasks.

18. A computer-implemented method for processing a
number of tasks, the method comprising:

receiving, at a computing device, information correspond-

ing to a set of tasks;

determining a delay to be imposed prior to claiming the at

least one unclaimed task, wherein the delay is deter-
mined at least in part on the number of tasks currently
claimed by the computing device;

determining that a period of time corresponding to the

delay has elapsed;

subsequent to the period of time, claiming the at least one

unclaimed task at the computing device; and
processing the task at the computing device.

19. The computer-implemented method of claim 18,
wherein if the number of tasks currently claimed by the one or
more computing devices is less than a desired number of
claimed tasks, the duration of the delay is zero.

20. The computer-implemented method of claim 18,
wherein the computing device is associated with a desired
number of claimed tasks.

21. The computer-implemented method of claim 20,
wherein the duration of the delay is proportional to the num-
ber of currently claimed tasks of the computing device which
exceed the desired number of claimed tasks.

22. The computer-implemented method of claim 20 further
comprising modifying the desired number of claimed tasks
based at least in part on the number of currently claimed tasks
of the computing device.

23. The computer-implemented method of claim 18 further
comprising receiving a request to release claim to the task;
and in response to the received request, releasing claim to the
task.

